SUPERFLAT

Open Market Consultation 19 November, 2021

Introduction to the Technical Content

François Polack, Synchrotron SOLEIL

Co-funded by the European Union

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement N° 101004728

Mirrors for the next generation of Synchrotron and FEL sources

- Progress on electron accelerator design allows nearly diffraction limited photon sources over a large energy range.
- Among LEAPS* members, several facilities have upgraded to such sources and many are planning upgrades in a near future
- Quality of mirror surfaces is a major limiting factor for transferring the source brightness to the sample.
- Next generation beamlines will increasingly require "nanometer precision" optical surfaces

* League of European Accelerator-based Photon Sources (https://leaps-initiative.eu/)

An X-ray beamline optics wish list

- Optics that have no measurable impact on the wavefront
- Optics that have surface microroughness compatible with the deposition of high-performance short period multilayers
- Such optics with sizes up to 1 m long
- Strongly aspheric surfaces for short focal length focusing of X-rays
- Ability to figure the optical surface to tailor the wavefront
- Optics that could withstand the high radiation power of our sources

Aim of Superflat PCP

- Incite and help the development of production processes compatible with the forthcoming X-ray optics demand in the EU
- These processes may include sequences of
 - Full-size tool polishing
 - Computer controlled abrasive or slurry polishing (CMP, pads, ...)
 - Deterministic local tool figuring (Ion beam, fluid jet, EEM, ...)
- Surface metrology is required to guide deterministic figuring
 - Suppliers should demonstrate adequate metrology
 - Cross-calibration will be done with the metrology of the buyers group

Summary of Specifications for Superflat Call

- Flat surface
 - Average curvature < 0.02 km⁻¹
- Minimum clear area 500 mm x 20 mm
- Figure error
 - Height error < 1 nm PV</p>
- Slope error
 - RMS slope error < 50 nrad
- Roughness < 0.1 nm RMS
- Figure and slope errors are evaluated on the clear aperture after subtraction of the "best fitting toroid" approximated by a 2nd order polynomial

Scope of Superflat

- Development of a fabrication process for high-quality flat mirrors in 3 phases
 - Conceptual design
 - Engineering design and metrology validation
 - Process development and prototype realisation

Scope of Phase 1 (3 months)

- A conceptual design study presenting
 - manufacturing technologies figuring machines, tool heads, processing algorithms – either pre-existing or which will be developed or upgraded in phases 2 and 3
 - metrology technologies either pre-existing or requiring development and their integration into the production process.
 - All computations and simulation needed to justify the above proposals (i.e. describing why existing tools or processes are considered sufficient or new developments are required)
- A detailed risk analysis from preliminary studies

Scope of Phase 2 (6 months)

- Engineering documents of the planned production means
- Technical study supporting the process choices
- A reduced scale evaluation report of processes, machining algorithms and metrology under development
- An update of risk analysis for phase 3
- Deliverables (at month 4)
 - A sample mirror of reduced area and specifications
 - A report on the metrology performed on an identified 75 mm x 15 mm area of this mirror with metrology equipment representative of that to be used in the proposed manufacturing process
 - The sample mirror will be cross-measured by the buyers group and a report sent to the manufacturer with the evaluation of phase 2. It will remain the property of the manufacturer and returned before phase 3

Scope of phase 3 (21 months)

- Development of an operational mirror manufacturing process
 - supported by a visit of production means by the buyers group on the supplier's premises
- Documentation of the developed process
- An analysis report on the limits of the process at the end of phase 3 with directions and prospects for improvement
- Deliverables :
 - Progress reports (M 6, 12, 18); final report (M21)
 - A full-size prototype mirror (M21)
 - A metrology report of the prototype (M21)

Cooperation between suppliers and the buyers group

- The members of the buyers group are developing and maintaining high performance surface metrology equipment and methods
- These metrology facilities are cross-checked on a regular basis
- They will be used for evaluation of the results
- Suppliers may ask for cross-checks with their own metrology means during phase 2 and phase 3
- Assessment of optical surface quality is not fully normalized.
- Cooperation is also expected to converge toward a common mutually agreed metrology data collection and processing protocol

Defining optical surface quality

- Surface quality of X-ray mirrors is classically evaluated by 3 global values:
 - figure errors, slope errors, roughness
 - after detrending with a best fitting polynomial surface
- Issues
 - Spatial frequency of the defects is not always specified
 - Frequency filters can yield very different results especially for RMS slopes
 - Filtering can be hidden in data acquisition and processing

As a result intercomparison can be strongly biased

Impact of surface imperfections on wavefronts

- Surface imperfections characterized by the height error
 h(X,Y) = distance to the design surface
- Local phase error of the reflected wavefront $sin\theta$

 $\varphi(X,Y) = 4\pi \frac{\sin\theta}{\lambda} h(X,Y)$, where θ is the grazing incidence angle

• Single material reflection

 θ must be below the critical angle of reflection $\theta_c \cong \sqrt{2 \Re(1-n)}$ $\delta = \Re(1-n)$ varies roughly as E^{-2} over the X-ray range Hence the scaling factor $\frac{\lambda}{\sin \theta_c}$ is nearly constant ~ 30 nm

• Multilayer reflection

The scaling factor $\frac{\lambda}{\sin \theta} = \Lambda_{mc}$ is the multilayer period $\gtrsim 2$ nm

Height variance, Total Integrated Scatter (TIS) and Strehl Ratio

• Light scattered from a rough surface is evaluated by the TIS

 $TIS = \frac{Total \ scattered \ intensity \ outside \ the \ specular \ reflected \ peak}{Total \ specular \ intensity \ in \ absence \ of \ roughness}$

• If the height distribution is Gaussian (variance= σ^2) it was shown that⁽¹⁾

$$TIS = 1 - exp\left[-\left(4\pi \sin\theta \frac{\sigma}{\lambda}\right)^2\right]$$

• The Strehl ratio complements TIS It is the ratio in the peak with / without roughness

Strehl =
$$1 - TIS = exp\left[-\left(4\pi \sin\theta \frac{\sigma}{\lambda}\right)^2\right] \approx 1 - \left(4\pi \sin\theta \frac{\sigma}{\lambda}\right)^2$$

The formula still gives reasonable estimate though Gaussian assumption may not be fully valid while Strehl > 0.1

Maréchal criterion
$$\sigma_w^2 < \frac{\lambda^2}{180}$$
 is equivalent to Strehl > 0.8

⁽¹⁾ Bennett, H.E., Porteus, J.O., 1961. Relation Between Surface Roughness
 ¹⁴ and Specular Reflectance at Normal Incidence. J. Opt. Soc. Am., JOSA 51, 123–129. https://doi.org/10.1364/JOSA.51.000123

Slope variance, Slope errors and PSF broadening

- The PSF is the FT of the autocorrelation of the pupil
- > if the pupil is multiplied by a phase factor $f = e^{i\varphi}$, then the PSF is convoluted by a broadening function equal to $|FT[f]|^2$
- The RMS width of the broadening function is generally calculable (it is not the case of the diffraction limited PSF, the integral being divergent)

•
$$\sigma_{kx}^2 = \iint \left| \hat{f}(\mathbf{k}) \right|^2 k_x^2 dk_x dk_y - \left| \iint \left| \hat{f}(\mathbf{k}) \right|^2 k_x dk_x dk_y \right|^2 = \iint \left| \frac{\partial f}{\partial x} \right|^2 dx dy - \left| \iint \frac{\partial f}{\partial x} f^* dx dy \right|^2$$

• Which for
$$f = e^{i\varphi}$$
, reduces to $\sigma_{kx}^2 = \langle \left(\frac{\partial\varphi}{\partial x}\right)^2 \rangle - \langle \frac{\partial\varphi}{\partial x} \rangle^2$

• Converting from wavefront (x, y) to surface coordinates $x = X \sin\theta$, y = Yand from wavevector to angular broadening $\sigma_{\theta x} = \frac{\lambda}{2\pi} \sigma_{kx}$ one finally gets

•
$$\sigma_{\theta x} = 2 \sigma'_x$$
, and $\sigma_{\theta y} = 2 \sin \theta \sigma'_y$; $\sigma'_x = \left(\left(\frac{dh}{dx} \right)^2 \right)$

• This is the geometrical broadening factor; it must be compared to the width of the diffraction limited PSF : $\frac{\lambda}{\sin \theta L} \approx 50 \ nrad - L$ is the coherently illuminated length

15

Power Spectral Density (PSD)

- Definition:
 - PSD: = $|FT[h(x, y)]|^2 \iff PSD = FT[h \otimes h]$ FT of the autocorrelation function
 - Distinction must be done between 1D and 2D transforms
 - Area PSD (APSD) corresponds to 2D FT of a height map. It has units of type d⁴ (e.g. μm⁴)
 - Linear PSD (L-PSD or usually PSD) for 1D FT of a profile. It has units of type d³ (e.g. μm³)
 - Relation to variances:
 - Height variance: $\sigma^2 = \iint PSD(f) d^2 f$ over all meaningful frequencies
 - Slope variance: $\sigma'^2_{x,y} = 4\pi^2 \iint f^2_{x,y} PSD(f)d^2f$

The APSD provides a full statistical representation of a surface,

but because of the grazing incidence, we are more sensitive to tangential gradients and an **average tangential line PSD** is statistically meaningful

An interesting evaluation tool : the Cumulated Power Spectral Density

- Definition
 - CPSD is the integral over frequency of the One-sided Line PSD
 - One sided PSD = k PSD(f); k=1 if f = 0; k=2 if $f \neq 0$;
 - CPSD is a graphic representation of the contribution of frequency content to the total variance

PSD are sensitive to data acquisition and processing

- Fourier transforms of finite length generate aliasing
- Proper windowing is required to limit aliasing
 - Should be normalized not disturb a uniform statistical distribution
- Frequency content is sensitive to filtering
 - Applied filtering and measurement noise are usually apparent on PSD
 - No filtering should be applied before FT
 - The meaningful frequency range must be defined

A common protocol to evaluate optical surfaces

- Measurement:
 - Surfaces will be measured on a regular XY grid covering the full clear area
 - Height measurements will be preferred. Slope measurements will be accepted if given a proof that twist deformation is preserved
 - No filtering will be applied
 - If stitching is used, individual sub-area measurement will be provided
- Fourier transform
 - FT will be performed on individual tangential lines after windowing
 - Choice of a window function needs further discussion before the call for tender
 - All line-PSDs will be averaged to preserve the global RMS value
 - Slope PSD will be computed from height PSD and integrated for CPSD
- A Python computation script will be provided to ensure identical processing

Specifications assessment (still being refined)

- Figure error
 - Height error PV and RMS on the whole active area
- RMS Slope error
 - PV and Rms values on the whole surface after application of a low-pass filter
 - script to be provided by the buyers group
 - Two frequency bands will be considered in slope CPSD
 - frequencies below 0.1 mm⁻¹ (band A)
 - frequencies between 0.1 mm⁻¹ and 1 mm⁻¹ (band B)
 - the cumulated RMS slope errors of the 2 bands should be below 50 nrad
 - contribution of band B should be less than 60% of total
- Roughness
 - Will be evaluated as average RMS height errors on at least 9 subareas of minimum size 1.4 x 1 mm²

Technical questions to be answered in the OMC report (15/12/21)

- Are the challenge goals pertinent ? Reasonable ?
 - In particular, are the height, slope and roughness targets compatible ?
- Are the phase scopes and durations properly distributed ?
- Is the budget per phase appropriate ?
- Are the proposed evaluation criteria
 - clear ?
 - pertinent ?
 - reliable ?
- Which other criteria should be proposed ?
- Any other question

